Year 5: Multiplication and Division (1)

MATMEMATICALI

VOCABULARY
prime numbers square numbers cube numbers common factors common multiples composite number

squared

cubed
Don't forget the other vocabulary you already
know!

I know that factors are numbers that multiply together to make a product.

I know that common factors are factors of at least two different products.

Factors of 8	Factors of 28
$1 \checkmark$	$1 \checkmark$
$2 \checkmark$	
$4 \checkmark$	
8	$2 \checkmark$
	$7 \checkmark$
	14
	28

The common factors of 8 and 28 are 1,2 and 4 .

I know that multiples are the product of two numbers multiplied together. They can be seen as extended times tables. I know that common multiples are multiples common
to two or more numbers.

I know that a prime number is a number that only has 2 factors - 1 and itself.

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50

I know that a composite number is a positive integer which is not prime.

Year 5: Multiplication and Division (1)

I know that a square number is a number that has been multiplied by itself.

I know that a cube number is a number that has been multiplied by itself then multiplied by itself again.

$$
\begin{array}{ll}
2^{3}=2 \times 2 \times 2=8 & 3^{3}=3 \times 3 \times 3=27 \\
4^{3}=4 \times 4 \times 4=64 & 5^{3}=5 \times 5 \times 5=125
\end{array}
$$

I know how to multiply and divide a number by 10,100 and 1000. I know when to use a place holder when multiplying and dividing by 10,100 and 1000.

$423 \times 10=4,230$

TH	H	T	O	.	\mathbf{t}
$\mathbf{7}$	$\mathbf{9}$	0	0		
	7	9	0		
		$\div 10$			
		7	9		
			$\mathbf{7}$.	9
100					
1,000					

